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View on a hypercube of four dimensions. 
The Hamiltonian Path reaches each of the 16 corners.

Abstract:  HMPQS  (Hypercube  Polynomial  Quadratic  Sieve)  or  SIQS  (Self  
Initializing  Quadratic  Sieve)  is  probably  the  fastest  known algorithm for  factoring  
numbers up to approximately 110 decimal digits (for greater numbers the significantly  
more complex GNFS (general number field sieve) is faster, see [3]). This description  
refers  to  ulimyhmpqs,  my  Common-LISP implementation  of  the  "HMPQS with  one  
large prime". Identifiers related to the source code are high-lighted in this Font.

The intention of the author was not to present a record-breaking implementation of  
this well-known algorithm, but

– to understand himself what science of the last decades has in stock, to reverse  
the very simple and fundamental operation of multiplying two integers, in spite of  
having only basic knowledge in number theory

– to have a ready-to-go, easy-to-use and still powerful LISP module for factoring 
large numbers.
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We are looking for a non-trivial divisor of n∈ℕ .

If  n  is odd and composite,  as already Fermat knew, it can be expressed as the 
difference  of  two  squares: n=uv ⋅u−v=u2−v2 .  As  a  matter  of  fact  it  is 
sufficient to find two squares, for which this weaker congruence holds:

u2−v2≡0 mod n , 

because then gcd uv , n ∣ n and gcd u−v , n ∣ n . One can use for instance the 
Euklidian algorithm to compute the greatest common divisor.

If we had u≡±v mod n  we would find only trivial divisors, and so we look for 
squares u2≡v2 mod n with u≠±v mod n  and  there  is  a  good  chance  to  find 
non-trivial divisors (the probability depends on the number of divisors of n).

QS

The  Quadratic  Sieve (QS)  is  a  factoring  algorithm  that  searches  solutions  for
u2≡v2mod n . It  systematically  generates many x i

2−n . The sieve part extracts 
those that can be multiplied together for a solution. If we found for instance

x1
2−n= p1⋅p2 , x2

2−n=p2
5⋅p3 und x3

2−n=p3⋅p1

for three primes p1, p2, p3 , it immediately follows that

x1
2−n⋅x 2

2−n⋅x3
2−n=p1 p2⋅p2

5 p3⋅p3 p1

and we have a solution x1 x2 x3
2≡ p1 p2

3 p3
2 mod n . 

Def. B-smooth. Let B a subset of all primes. A number is defined to be B-smooth, if 
all its prime factors are contained by B. (Note: This extends the common definition for 
"x k-smooth", which means that no prime factor of x is greater than k. In this case the 
set B contains all primes less than or equal to k.)

In the above example we had a "factor base" B={ p1, p2, p3} and x1
2−n , x2

2−n ,

and x3
2−n were B-smooth. Obviously the QS requires a suitable factor base B and on 

one hand an efficient procedure to find  B-smooth x i
2−n (sieving) and on the other 

hand a method to combine a square from these (solving).
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The factor base

Let p be a prime factor of x2−n , so p∣x2−n , and x2≡n mod p . As x does 
exist, n must be quadratic residue modulo p. So the factor base B needs to contain only 
those primes p, for which the Legendre-symbol is  n

p =1 . The probability for this 

is  approximately 1
2 ,  because  there  are ⌈ p1

2 ⌉ quadratic  residues  modulo  p.  (The 
Legendre-symbol has been implemented as the generalized jacobisymbol).

It is easier to find  B-smooth numbers, if the elements of the factor base are rather 
small. So we choose B={−1}∪ {p ∣ p prim∧ p pmax ∧  n

p =1} .

The −1 is useful, because we extend the definition of  B-smooth to all  integers. 
Besides always 2∈B , because 0=02 and 1=12 . (Note: It may happen, that the 
resulting  factor  base  for  a  certain  n lacks  many  small  primes.  This  reduces  the 

probability, that some x2−n is  B-smooth. Multiplying  n now by a small odd prime 
might result in a more favourable factor base and a faster factorization, although the 
number to be factored becomes greater. See density.)

Of what size shall the factor base be? The larger B, the easier it is to find B-smooth 
numbers,  but  the  more  B-smooth  numbers  one  needs  and  the  more  work  it  is,  to 
multiply a square from them. Some very rough assumptions about the distribution of 
smooth numbers and the number of steps needed to find them, lead to the famous result

# Bopt≈e2/4⋅ln n⋅ln ln n (see [1] and [4] for details). However, the actual optimum value 
(factor-base-size) is implementation dependent and though limited by the available 
memory. At this point we are only interested in its magnitude:

For n≈1030 , 1050 , 1070 we take # B≈400, 4 000, 25 000 factors.

Sieving

The smaller ∣x i
2−n∣ is, the more likely x i

2−n is B-smooth. So we search close to
x≈n . For example we could scan all x in an interval X :=[⌊n ⌋−M ; ⌊n⌋M ]

by probe-dividing with the elements of the factor base. That's too slow, and the most 
important trick of the QS is a quick heuristic to find the x, that have a good chance to 
give B-smooth x2−n :

At first the sieve S  will be initialized for all x∈X with S x⌊ log2∣x
2−n∣⌋ . So 

we have very small integers here, the function  ilog2 is realized by the LISP-function 
integer-length.  Instead  of  expensive  divisions,  we  simply  subtract  rounded 
logarithms. With a little number theory we can find  for each p j∈B all x∈X for 
which p j divides x2−n ...
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Assume we know one number r j with p j ∣r j
2−n .  Then for all z∈ℤ , p j

divides r jz⋅p j
2−n=r j

2−n2zr j z2 p j⋅p j as well.

For  all x∈X ∩{r j z⋅p j∣z∈ℤ} we  now  know  that p j ∣ x2−n and  at  these
⌊2M1/ p j⌋ positions  we  set S xS x−⌊ log2 p j⌋ .  This  can  be  done  quite 

effectively,  it's  just  a loop and some integer additions!  After having "sieved in" all
p j∈B ∖{−1} this  way,  it  is  easy,  to  find  good  candidates  for  B-smooth x2−n

because at  those positions we will  have S x≈0 .  In practice we scan the sieve for 
positions  x at  which S x is  less  than  a  certain  threshold value,  for  which
⌊ log2 max B⌋ is  a  good  heuristic.  To  find  out  whether  these x2−n indeed  are 

B-smooth, we then need to probe-divide.

On one hand the smaller factors p j take the most work to sieve in, on the other 
hand these small factors have the least effect on S x . Practice shows, that the run-time 
can be improved, if primes p j below a certain limit (omit-below) are not sieved in at 
all, and to choose a little higher threshold value to compensate. Finally we could also 
sieve in powers of p j , but again the computational costs won't pay.

But how do we find r j , so that r j
2≡n mod p j ? r j does exist, because n is 

quadratic residue modulo p j . Instead of simply trying 0, 1, ... , p j−1 we use the 
powerful  Shanks-Tonelli-algorithm.  Its  idea  is  the  stepwise  "improvement"  of  an 
assumed root and it has been implemented as sqrtmodprime. 

In fact there always exist two modular square roots of n for each odd prime p j : 
r j  (found  by  the  Shanks-Tonelli-algorithm)  and −r j≡p j−r j mod p j .  It  is 

important to sieve in for both roots.

Solving

How  do  we  proceed,  so  that  a  product  of  B-smooth  numbers  becomes  square? 
Obviously the prime exponents of the product need to become even. The equations we 

obtained  by  sieving  are  of  this  form:  x i
2−n=∏

p j∈B
p j

ei , j .  We  are  interested  in  the 

corresponding congruences  x i
2≡∏

p j∈B
p j

ei , j mod n .  By multiplying  the congruences 

for some x1 and x2 , we get

x1 x2
2≡∏

p j∈B
p j

e1, je2, j mod n .

To find out, if a prime exponent e1, je2, j is even, it is sufficient to know if e1, j

is  even  and  if e2, j is  even,  in  other  words  we  look  at e i , j mod 2 only  and 
multiplying two congruences becomes an addition of two vectors in ℤ2

#B on the right 
hand side of the congruence. That sounds like loss of information, but the right hand 
side can be reconstructed later on (the values of x1 and x2 are stored in  xarray). 
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Finally we obtain a matrix that can be solved for instance by the Gauss-algorithm, and 
at this point we anticipate that it requires approximately # B equations, to make all 
prime exponents become even.

Let  me put  it  another  way:  We transform each equation x i
2−n=∏

p j∈B
p j

ei , j into  a 

relation of this form:
〈 {i} ; { j ∣e i , j mod 2=1}〉

So  we  remember  only  the  "non-square"  prime  factors.  The  multiplication  of  two 
equations is equivalent to the following operation on the two corresponding relations:

〈 I 1 ; J 1〉 × 〈 I 2 ; J 2〉 = 〈 I 1∗I 2 ; J 1∗J 2〉 , 

where M 1∗M 2 :=M 1∪M 2∖M 1∩M 2 means  the  exclusive-or-operation  on  the 
sets M 1 and M 2 (isomorph to addition in ℤ2

#B ).

The simple algorithm  put-into-its-bucket is derived from Gaussian elimination: 
Each p j∈B corresponds  to  an  initially  empty  bucket bucket j nil .  Every  new 
relation will be stored in "its" bucket, according to the greatest prime factor that has an 
odd exponent. If there is already an relation in this bucket, the new relation will be 
multiplied by the existing one, which makes the corresponding prime factor exponent 
even and the process is repeated with the resulting relation.

put-into-its-bucket 〈 I ; J 〉 :
if J={} then try-to-solve  I 
else if bucketmax J=nil then bucketmax J〈 I ; J 〉
else put-into-its-bucket bucketmax J×〈 I ; J 〉 

At latest when all buckets are non-empty, one more relation will cause all exponents 
to become even and we obtain the relation 〈 I ; {} 〉 , that corresponds to the desired 
congruence u2≡v2 mod n with

u=∏
i∈ I

x i   and  v=∏i∈ I
x i

2−n ∈ ℕ

Note, that at this place we deal with very big numbers, because # I≈# B
2 numbers of 

size x i≈n and x i
2−n≈M n will  be  multiplied.  Should gcd u±v , n now 

obtain only trivial divisors of n, every extra relation would give an extra chance.

The  ulimyhmpqs-implementation  continues  the  hunt  for  divisors  of  n until  it  is 
completely factored. On new divisors (see  new-factor) a probabilistic primality test 
(prime?, currently Solovay-Strassen) will be applied. Composite divisors are tested for 
being a power (power-breaker), and tried to be factored further by taking the gcd with 
already known divisors.

Relations in ulimyhmpqs are not represented as bit-vectors in ℤ2
#B but as sorted 
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lists. Bit-vectors for new relations would contain almost just 0's (the resulting matrix is 
called to be sparse), corresponding to very short lists. During probe-division the factors 
occur already in sorted order and the algorithm described above will be supported by 
the fact, that max J must not be searched, as it is the first element of the sorted list. 
The  exclusive-or-operation  on  two  sorted  lists  (xor-merge) can  be  done  quite 
effectively by the use of destructive list operations.

In spite  of list  representation Gaussian reduction is  not the optimum method for 
solving sparse matrices. See [1] for a discussion of this matter, and why more serious 
implementations use the superior block Lanczos method to delay the point at which the 
linear algebra step becomes the dominant step in run-time.

Partial relations

If  we choose the sieve threshold value too low, we might not catch all  possible 
relations. On the other hand, if we choose the threshold value too high, we might waste 
time by probe-dividing many numbers that are not B-smooth. The first implementations 
of the QS already used the following trick: If after probe dividing x1

2−n there is only 
a "small" remaining factor R∉B ,

x1
2−n=R⋅∏

p j∈B
p j

e1, j ,

we keep this "partial relation" in memory. If we now find another partial relation with 
the same remaining factor R, we can multiply both relations and obtain

x1 x2
2≡R2⋅∏

p j∈B
p j

e1, je2, j mod n .

We can use this product as a "full relation", because R2 is square and needs not to be 
considered in the solving step. If we have k partial relations with R, we will get k−1
full relations.

This extension is called QS with one large prime. In fact it doesn't matter whether R 
is  prime,  on  the  other  side  we know it  is  for  sure  if Rmax B2 ,  because  B is 
defined to contain all primes below max B , that possibly divide some x2−n .

ulimyhmpqs keeps partial relations with R less than slp-max (slp means single large 
prime) in a hash-table of 2h places. A cheap ⌊R/2⌋mod 2h serves as hash-function. 
In case of collisions that do not reveal a full relation, only the partial relation with the 
smaller  R is kept, as it has the better chance to find a fitting partner.  slp-max can be 
altered by using the alfa parameter (slp-max  alfa max B ), h corresponds to the 
slp-log2 parameter,  that  defaults  to  16,  and  should  be  increased  when  factoring 
numbers greater than 1060 if enough memory is available.
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The greater n is, the more frequently relations will be found by combining partials. 
For very large numbers n10100 one will find only very few full relations and the 
algorithm  depends  almost  exclusively  on  finding  partials.  Some  implementations 
consequently  go  one  step  further,  and  allow  larger  remaining  factors  R,  that  are 
composite and hence have to be factored. The QS with two large primes keeps "partial-
partials": If there are e.g. partial relations with R1=q1 q2 , R2=q2 q3 , R3=q3 q1 , a 
graph-cycle-finding algorithm reveals the desired square

R1 R2 R3=q1 q2 q3
2

See [4] for an excellent discussion of this issue. The authors of [2] estimate that this 
improvement  of  the  QS  has  shifted  the  cross-over-point  with  the  GNFS  to 
approximately 130 decimals.

The size of the sieve

Complying with the general heuristic "start searching, where you believe you will 
find something", we already mentioned the sieve interval

X :=[⌊n ⌋−M ; ⌊n⌋M ]

above. What size must M have, in order to find a few more than # B relations? This in 
fact is a difficult question, and can be answered practically by breaking X into smaller 
sub-intervals of size 2m

X k :=[⌊n⌋−1k⋅⌊k /2⌋⋅m ; ⌊n⌋−1k⋅⌊k /21⌋⋅m−1]

which can be scanned successively for k=0, 1, 2, ... with increasing distance from 
[n] until there are enough relations to factor  n. One has then sieved less than one 

sub-interval too much, to solve the task (Other than ulimyhmpqs, most implementations 
first  collect  the  relations  before  the  solving  starts.  Then  of  course  one  needs  a 
probabilistic estimate for the number of required relations, e.g. #B+20).

With increasing k,  the x2−n become larger  and larger  and fewer and fewer  of 
them are  B-smooth. The QS tends to "fall asleep". Is there a possibility to make the

x2−n smaller and or to limit their size?

Uli Meyer  ulimyhmpqs    7



MPQS

The QS searches for x∈X with  B-smooth f x  , where  f x =x2−n . The 
principle p j∣ f  s j⇒ p j∣ f  s jz⋅p j for  all z∈ℤ holds  though  for  every  poly-
nomial with integer coefficients (not taking into consideration what difficulties might 
occur, when looking for the suitable s j ). 

Consider  the  polynomial g  x=axb2−n .  It  generates  squares  modulo  n as 
required for the QS. If we now choose b so that a given a divides b2−n , then a also 
divides g  x=a2 x22 a b xb2−n for  all x∈ℤ .  The  resulting  polynomial

h x :=g x /a though grows faster than f x =x2−n , but by choosing different 
pairs a , b we can  generate  as  many  different  polynomials  as  we  like.  Instead  of 
enlarging the sieve interval,  with the disadvantage described above, one can simply 
switch to another polynomial. That's the idea of the Multi Polynomial Quadratic Sieve, 
MPQS.

Let's  have  another  look  on g x .  Let a≪n and b≪n .  The  polynomial
g  x gives a quite slim parabola with a minimum of roughly g 0=b2−n≈−n . 

Though we have the best chance to find smooth numbers if we keep them small, and so 
we choose  a so that the maximum g M =a⋅Mb2−n≈n in the sieve interval
[−M ;M ] has approximately the same absolute size. So we obtain

a ideal ≈
2n
M

.

Where the QS sieves on numbers of size f [ n]M ≈2⋅M⋅ n , the MPQS with
a≈a ideal comes along with h M ≈n /a≈ 2

2⋅M⋅n .  The sieve size  M of the QS 
strictly depends on #B. When using the same factor base size with the MPQS, we can 
greatly influence and limit the size of the numbers sieved upon by simply choosing an 
M much smaller than what would result in the QS. Of course there is an optimum M, 
which varies with different implementations. This optimum depends on the run time 
costs for switching polynomials and the size of n.

The first version of the MPQS used a∉B . To avoid extra considerations in the 
solving process one chooses a=t 2 to be square of some prime t. This turned out to be 
disadvantageous, because the effort to compute all the s j for each new a≈a ideal is 
quite large. Contrarily the HMPQS (or SIQS) uses a that are  B-smooth and so take 
part in the solving. Switching polynomials is much faster here, because each a turns out 
to allow a large set of suitable b, each giving a different polynomial gb x , and the 
recalculation of the "zeros" s j within this set of polynomials is relatively cheap.
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Modular square roots

The  QS  required  solutions  for r j in r j
2≡n mod p j .  In  this  context  we 

mentioned the Shanks-Tonelli-algorithm to find modular square roots modulo an odd 
prime. There are two solutions, ±r j .

Due  to  the  condition a ∣b2−n the  MPQS  requires  to  solve  another  quadratic 
congruence b2≡n mod a for each  a. Having chosen a=t 2 as the square of some 
prime also reveals two solutions for b.

Let  now a=∏ ak be  composite  with ak prime, ak≠2 and k≠l⇒ak≠al  
Which b solve now b2≡n mod a ?

From b2≡n mod∏ a k it immediately follows for all k: b2≡n mod ak  and so 

for each ak the same condition is valid as for the primes of the factor base  n
a k =1

and  thanks  to  Shanks-Tonelli  we  can  compute  the  two  solutions ±k of
k

2≡n mod ak  for all  k. With the help of the chinese remainder theorem, we are 
now able to construct our desired

b≡∑ k⋅ak⋅
a
ak
mod a   with ak⋅

a
ak
≡1 mod ak 

where ak is the multiplicative inverse of a
ak

modulo ak , which exists as ak and 
a
ak

are relatively prime (see invmod, a recursive definition of the extended Euklidian 
algorithm).

Assume  a had d1 prime factors, so k∈{0, 1, ... , d } . Due to the multiplicity 
of the k we get a total of 2d1 different roots

b ≡∑
k=0

d

k⋅bk mod a   with bk :=k⋅ak⋅
a
ak

and ∈{−1, 1}d1

HMPQS

Consequently the HMPQS makes use of this fact, and a corresponding number of 
different polynomials gb x can be constructed for a composite a at once. 

Consider  now  and  with k=−k for all k∈{0, 1, ... , d } .  Obviously it 
is b =−b . Unfortunately we now have

g−b x = a⋅x−b2−n =a⋅−x b2−n = gb−x 

and as we sieve in an interval x∈ [−M ;M ] , we would effectively sieve the same 
numbers  twice.  To  avoid  this  we  need  to  prevent  to  alternate  all  signs k and 
therefore  we  set  0:=1 and  there  are  still 2d different  polynomials gb x
remaining.
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To obtain a large number of polynomials,  d needs to be large as well, so  a should 

have many small prime factors ak and due to  n
a k =1 this a is B-smooth and each

ak divides gb x for all x∈ℤ .

There are two open questions. How can one compute the s j for some gb x ? 

And finally, how do we choose d and the ak∈B , so that a=∏
k=0

d

ak≈a ideal ?

The hypercube

In the paragraph "sieving" we defined the r j with r j
2≡n mod p j . For the QS 

we  needed  to  calculate  them  for  all p j∈B ,  due  to  their  useful  property
p j ∣ f ±r jz⋅p j for all z∈ℤ . The HMPQS requires them as k , because of
k=r j for ak=p j∈B .  Besides we will  need them to calculate  the s j with the 

useful property p j ∣ g s jz⋅p j :  Due to g  x= f axb it  immediately follows 
that a⋅s jb≡r j mod p j . To solve this congruence for s j , we need to have the 
multiplicative inverse of a modulo p j , let's say å j with a⋅å j≡1 mod p j . This 
inverse exists only if  a and p j are relatively prime. No problem, because otherwise, 
we have p j=ak and we know already that p j ∣ g x ,  that's after all the way we 
constructed g  x  (ulimyhmpqs  sets  factor-1/amodp −1 ,  to  mark  those

p j=ak that will not be sieved in). Finally we obtain two solutions

s j≡ å j⋅±r j−b mod p j .

Initially we have to compute the b  for each  and the s j for the complete 
factor  base  before  we  can  start  sieving.  This  computational  effort  is  not  to  be 
underestimated! But there is another trick: Each  with 0=1 corresponds to the 
corner of a d-dimensional hypercube of edge length 2 and the awkward sum-calculation 
for b  becomes  one  simple  addition  if  we  just  traverse  from  one  corner  to  a 
neighbouring corner, in other words, change the sign of only one of the k at a time. 
We reach each corner of the hypercube if k follows a Hamiltonian path:

path(d): if d=0 then [ ] else path(d-1) & [d] & path(d-1)

e.g. path(4)=[1 2 1 3 1 2 1 4 1 2 1 3 1 2 1]

Let  ' k=−k and  ' i≠ k=i , then we obtain b  ' ≡b−2⋅k⋅bk mod a . 
Especially we have s j '  ≡ s jk⋅2 å j bk mod p j and it is worth to store the 
values 2 å j bk in a two-dimensional array (kip) in advance, before starting to traverse 
the hypercube.
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The a-generator

How to  construct  a with a=∏
k=0

d

ak≈aideal and ak∈B ?  d shall  be  as  large  as 

practicable,  so the chosen ak need to be small. Remember, that p j=ak cannot be 
sieved in.  If  we now select  the smallest p j∈B as ak ,  the resulting polynomials

h  x  generate probably less  B-smooth numbers, as if  we had chosen larger ak . 
Additionally d should be dimensioned so, that it takes at least a few a to factor n, so it 
was worth to prepare the corresponding hypercubes (analogous to the argument  for 
using sub-intervals for the QS).

Similar  as  described  in  [2]  ulimyhmpqs  therefore  uses ak with ak=p j and
2qmin j2qmax . Within these boundaries there are q=qmax−qmin even and odd j. 

Now all q3 possible permutations of three different odd indices are generated:

top:= p j1
⋅p j2
⋅p j3 with j 1≠ j 2≠ j3≠ j1 . 

So  the  smallest  product  will  be topmin=p2qmin1⋅p2qmin3⋅p2qmin5 .  These  triples  are 
distributed among an array A of size T according to their logarithms, each place of the 
array may contain more than one element:

A[ index log top] top with index x:=[
x−log topmin

log topmax−log topmin
⋅T ] .

Finally  a  recursive  function  systematically  multiplies a1 by  factors  with  even 
indices until  a is large enough, so that the triples in  A can be taken to "top it off", to 
meet a⋅top≈a ideal . Recursion starts with make-cubes 1, qmin  .

make-cubes a , q  :
if log a ideal−log a log top min then

unless log a ideal−log a log topmax

use-cube a⋅A[ index log aideal−loga]

else if qqmax then
make-cubes a⋅p2q , q1
make-cubes a ,q1

This pseudo-code does not take into account, that a place of the array is either empty 
or contains more than one triple, so either no or a few hypercubes at once are generated. 
The  author's  intention  was  to  demonstrate,  that  make-cube does  not  generate 
hypercubes of a fixed dimension  d (it  starts with the higher possible  d) and that all 
generated a are different, because the intersection of the two subsets of B (even and odd 
j) is empty.
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It required some experimenting to find reasonable parameters, so that on one hand 
the array is not too sparse (to assure a sufficient number of hypercubes is generated) but 
on the other hand large enough, so that the error

error a :=∣a−a ideal∣/a ideal

becomes small. By setting qmin=5 the first nine primes of the factor base will not be 
used  at  all.  For n1042 we  set qmax=105≪# B

2 and  achieve  a  total  of  161 700 
possible  topoffcubes which we distribute among T=20 000 places. This results in 

error a 0,05% ,  good  enough  to  not  have  any  significant  drawback  on  the 
performance.

To prevent  the  number  of  generated  hypercubes  to  be  insufficient  this  way,  for
n1042 ,  the  top will  be  made  of  only  two  factors  to  limit  their  size.  Below
n≈1025 now qmax is  limited  also  by # B/2 .  This  all  leads  to  have  less  tops, 

which  is  counteracted  by  setting T :=min {20 000, ⌊# {top}/8⌋} .  Nevertheless  an
error a ≈0,5% will  be  achieved  and  tests  with 105 different n≈1023 always 

generated  sufficient  a.  For n1023 ulimyhmpqs  diverts  to  the  rigorous  algorithm 
make-cublets, that uses all elements of B regardless of error(a). This was just to close 
the gap to probe-division, which is sufficient to factor numbers up to n≈1012 if one 
has the first 100 000 primes at hand (Of course there are better algorithms for numbers 
of intermediate size).

The composition of the factor base can be assumed to be random, the probability for

 n
p =1 is roughly 1

2 . So there is a very small risk that make-cubes fails. If so, 
the  a-generator reverts to use two- instead three-factor  tops and finally continues by 
using make-cublets to finish the factorization.

The sieve in detail

To  refer  to  the  sieve  array  more  efficiently,  the  intervall X :=[−M ;M ] is 
projected onto Y :=[0 ; 2M ] . The resulting sieve polynomial is

h '  y =h  y−M =a y⋅y

with  :=2b−Ma  and  :=aM 2−2bMb2−n
a

,

So two bignum multiplications and additions are necessary to compute an individual 
value h '  y  . Initializing the sieve by S y⌊log 2∣h '  y∣⌋ would be much too slow, 
if  we had to compute  each h '  y  within y∈[0 ; 2M] .  Alternatively ulimyhmpqs 
determines sub-intervals Y l⊂Y for l∈ℕ , so that ⌊ log2∣h '  y ∣⌋=l for all y∈Y l  
Unfortunately the parabola has four such sub-intervals for each l, according to the signs 
of h '  y  and y− 

2a .  Besides  the  inverse  function  of h '  y  is  required  to 
determine  the  boundaries h '−12 l of  the  sub-intervals.  For  performance  reasons 
floating point arithmetic is used to take the required roots.
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Finally the factors p j with p j∤a will be sieved in. Of course both "zeros" s j are 
to  be  considered.  With p j∣g  s j  we  get p j∣h '  s jM  and  starting  with  the 
smallest y∈Y with p j∣h '  y  a loop runs across the sieve:

y s jM⌈ −M− s j

p j
⌉⋅p j

repeat S y S y−⌊ log2 p j⌋

y y p j

until y2M

Thereafter, when scanning the sieve for values S y < threshold, all p j have to be 
considered for probe-dividing, even those with p j∣a , as g  y−M =a⋅h '  y  might 
be divisible by a  power of ak ,  especially  as the ak were chosen to be small.  If 
probe-division now reveals a h '  y i to be B-smooth,

h '  y i=h  y i−M =∏ p j
ei , j

a new relation has been found, because

g  yi−M =a⋅h  yi−M =a  y i−M b2−n

will  be  B-smooth  as  well.  Instead  of  multiplying  by  a and  dividing again  by ak

thereafter, the new relation can be expressed as
〈 {i} ; { j ∣ e i , j mod 2=1}∗{ j ∣∃k  ak= p j}〉 and x i :=a  yi−M b

and processed as described above (solving).

Summary of the algorithm

The sieving part of the algorithm has been summarized on the next page in pseudo 
code with some references to the source-code. The solving part and the a-generator 
have been described above, and will not be repeated here.

Given n, #B and M, the factor base B :={−1, p1, p2,...} will be set up like this:

set j2 , p0−1 , p1 2

for p3,5,7 ,11...  (the odd primes)

if  n
p =1 then set p j p , j j1

until j=# B

For all p j∈B ∖{−1} we compute r jn mod p j and  ⌊ log2 p j⌋ in advance. 
Let i0 the number of found relations. To prepare the single large prime extension, 
we further need an array H of 2h places, each initialized to H nil , which serves 
to store partial relations. Full relations will be stored in x i (xarray) and the buckets 
described in the paragraph on solving.
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For each generated hypercube a=a0⋅a1⋅⋅⋅ad≈a ideal with ak=p j k (a-generator)

for k 0,... , d set ak
a
ak
−1mod ak  , bk r jk

⋅ak⋅
a
ak

set bnil
for k 1,2 ,1,2 ,3 ,2,1 , .... (Hamiltonian path, b-generator)

if b=nil then set b∑k=0
d bk

for p j∈B ' :={p∣ p≥omit-below∧¬ p∣a}
set å j

1
a mod p j

set s j å j⋅r j−b mod p j
set s j '  å j⋅−r j−b mod p j
for k '1,... , d set kip j , k '2 å j bk ' , k1

else set bb−2⋅k⋅bk

for p j∈B '
set s j s jk⋅kip j , k mod p j
set s j '  s j 'k⋅kip j , k mod p j

set k−k

set  2b−Ma  ,  aM 2−2bM b2−n
a (sieve-for-ab)

let h '  y :=a y⋅y
for l0,1 ,2... (init-sieve)

for each Y l⊂[0 ;2M ] with y∈Y l⇒⌊ log2 h '  y⌋=l
for y∈Y l set S y l

for p j∈B ' (sieve-in)
set y s jM⌈ −M− s j

p j
⌉⋅p j

while y≤2M set S y S y−⌊ log2 p j⌋ , y y p j

set y s j 'M⌈ −M−s j '
p j
⌉⋅p j

while y≤2M set S y S y−⌊ log2 p j⌋ , y y p j

for y0,... ,2 M
if S ythreshold then  (divide-out-mod-2)

set R h'  y , x a y−M b , J { j0,... , j d }
if R0 then set R−R , J  J∗{0}
for p j∈B ∖{−1}

set e0
while R mod p j=0 set e1−e , R R / p j

if e=1 then set J  J∗{ j}
if R=1 then set i i1 , x i x

put-into-its-bucket {i} , J 
else

set ⌊R/2⌋mod 2h

if H =nil then set H R , x , J 
else 

let R' , x ' , J ' :=H 

if R=R' then
set i i1 , x i x⋅x '
put-into-its-bucket {i} , J∗J ' 

else if RR' then set H R , x , J 
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Parameter optimizing

A variety of parameters need to be adjusted, to optimize run time. These are the size 
of the factor base #B, the sieve size 2M, the limit omit-below (primes smaller than this 
will not be sieved in), the size of the hash-table to keep partial relations, and the sieve 
threshold.  ulimyhmpqs  allows  to  specify  these  parameters  manually,  but  though  it 
offers  some  reasonable  default  values.  When  determining  these  default  values 
empirically, seven problems occured. 

First, there are dependencies between parameters (e.g. a larger omit-below should 
go with a larger threshold) which requires multi-dimensional test series. Second, due to 
the  almost-exponential  run  time  characteristics  it  is  difficult  to  conclude  from test 
results for smaller n to higher n, so especially when we need good parameters, because 
run-time is extremely high, we can't run complete tests. Third, optimum parameters for 
some  n may differ from another  n of almost the same size due to the quasi-random 
composition of the factor base. Fourth, if you try to substitute test series by prediction 
through math, you enter a difficult,  apparently only partly explored area of analytic 
number  theory.  Sixth,  the  nature  of  LISP  garbage  collection  causes  noise  in  time 
measurement. Seventh, parameters depend on the individual machine, the used LISP 
and must be limited so that the required memory does not exceed the available.

The most important parameter is the factor base size  #B. Fortunately there is this 
heuristic # Bopt≈e2/4⋅ ln n⋅ln ln n which ulimyhmpqs uses, although in almost every case 
75% of this value runs faster. This was decided, as especially when n turns out to have a 
very  unfavourable  factor  base  (that  lacks  small  factors),  #B has  to  be  higher  to 
compensate. I have started to investigate heuristic estimates for the frequency of smooth 
numbers of given size that do not ignore the composition of the factor base (like in [1] 
and [4]) but this work is not finished yet. Finally the hmpqs needs ~ # B2 memory, 
which  becomes  a  bottleneck,  when  factoring  large  numbers.  The  default-function 
factor-base-size limits #B to 9 000, which will require roughly 100MB.

Thereafter test series with different M and n up to 1060 were run, and the statistic 
optimum was approximated by M opt≈4800 n.0182 (see m-opt).

Another test series showed, that it is in average favourable to not sieve in primes 
below 25 (omit-below), if the threshold is increased by 1

2⋅log2 p for each prime  p 
that is omitted.

When trying  to factor  numbers  greater  than 1060 with ulimyhmpqs  two aspects 
have  to  be  considered:  First  #B has  to  be  chosen  lower  than # Bopt ,  because  the 
gaussian reduction will become slow. Besides the available memory has to be taken 
care  of.  Second the threshold has to  be increased (delta-t)  in  order  to  catch more 
partial relations, they will now play an important role.
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The  following  table  of  average  run-times  refers  to  ulimyhmpqs  running  on 
Macintosh Common LISP 4.3.5. on a 500MHz G3 processor. Except for the manual 
setting of #B=7000 for n≈1060 the default parameters were used.

log10 n #B M time

30 420 16900 1.3s

40 1350 25700 23s

50 3800 39000 270s

60 7000 59000 3800s

4998267725099435687608264798548361735594197211550916814863113089903531 
was the 70-digit number,  and n=22561 the 78-digit number used in the following 
test runs. Where in the table above in average less than 10% of the relations where 
found due to partials, this rate could be increased by choosing a higher threshold (the 
number in parentheses refers to the delta-t parameter).

log10 n #B memory M threshold due time

70 9000 100MB 80000 22 (+0) 14% 38986s

27 (+5) 34% 32402s

30 (+8) 45% 28590s

77 20000 500MB 122257 31 (+10) 47% 263300s

For the last two tests the size of the hash-table had been precautionary changed from the 
default setting of 216 to 220 to avoid collisions, which turned out to be sufficient, as 
only 12% of the hash-table places were occupied after the last 73hrs test.

The source code contains a description of the parameters and the functional access to 
ulimyhmpqs, as well as a description of the progress report, that will be displayed if the 
:report parameter  is  set  to  T.  Users  who  like  to  optimize  ulimyhmpqs  for  large 
numbers will find some code, that allows to gather performance data without actually 
completing a factorization.
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