
Uli Meyer
Notes on ulimyhmpqs

View on a hypercube of four dimensions.
The Hamiltonian Path reaches each of the 16 corners.

Abstract: HMPQS (Hypercube Polynomial Quadratic Sieve) or SIQS (Self
Initializing Quadratic Sieve) is probably the fastest known algorithm for factoring
numbers up to approximately 110 decimal digits (for greater numbers the significantly
more complex GNFS (general number field sieve) is faster, see [3]). This description
refers to ulimyhmpqs, my Common-LISP implementation of the "HMPQS with one
large prime". Identifiers related to the source code are high-lighted in this Font.

The intention of the author was not to present a record-breaking implementation of
this well-known algorithm, but

– to understand himself what science of the last decades has in stock, to reverse
the very simple and fundamental operation of multiplying two integers, in spite of
having only basic knowledge in number theory

– to have a ready-to-go, easy-to-use and still powerful LISP module for factoring
large numbers.

Uli Meyer ulimyhmpqs 1

We are looking for a non-trivial divisor of n∈ℕ .

If n is odd and composite, as already Fermat knew, it can be expressed as the
difference of two squares: n=uv ⋅u−v=u2−v2 . As a matter of fact it is
sufficient to find two squares, for which this weaker congruence holds:

u2−v2≡0 mod n ,

because then gcd uv , n ∣ n and gcd u−v , n ∣ n . One can use for instance the
Euklidian algorithm to compute the greatest common divisor.

If we had u≡±v mod n  we would find only trivial divisors, and so we look for
squares u2≡v2 mod n with u≠±v mod n  and there is a good chance to find
non-trivial divisors (the probability depends on the number of divisors of n).

QS

The Quadratic Sieve (QS) is a factoring algorithm that searches solutions for
u2≡v2mod n . It systematically generates many x i

2−n . The sieve part extracts
those that can be multiplied together for a solution. If we found for instance

x1
2−n= p1⋅p2 , x2

2−n=p2
5⋅p3 und x3

2−n=p3⋅p1

for three primes p1, p2, p3 , it immediately follows that

x1
2−n⋅x 2

2−n⋅x3
2−n=p1 p2⋅p2

5 p3⋅p3 p1

and we have a solution x1 x2 x3
2≡ p1 p2

3 p3
2 mod n .

Def. B-smooth. Let B a subset of all primes. A number is defined to be B-smooth, if
all its prime factors are contained by B. (Note: This extends the common definition for
"x k-smooth", which means that no prime factor of x is greater than k. In this case the
set B contains all primes less than or equal to k.)

In the above example we had a "factor base" B={ p1, p2, p3} and x1
2−n , x2

2−n ,

and x3
2−n were B-smooth. Obviously the QS requires a suitable factor base B and on

one hand an efficient procedure to find B-smooth x i
2−n (sieving) and on the other

hand a method to combine a square from these (solving).

Uli Meyer ulimyhmpqs 2

The factor base

Let p be a prime factor of x2−n , so p∣x2−n , and x2≡n mod p . As x does
exist, n must be quadratic residue modulo p. So the factor base B needs to contain only
those primes p, for which the Legendre-symbol is  n

p =1 . The probability for this

is approximately 1
2 , because there are ⌈ p1

2 ⌉ quadratic residues modulo p. (The
Legendre-symbol has been implemented as the generalized jacobisymbol).

It is easier to find B-smooth numbers, if the elements of the factor base are rather
small. So we choose B={−1}∪ {p ∣ p prim∧ p pmax ∧  n

p =1} .

The −1 is useful, because we extend the definition of B-smooth to all integers.
Besides always 2∈B , because 0=02 and 1=12 . (Note: It may happen, that the
resulting factor base for a certain n lacks many small primes. This reduces the

probability, that some x2−n is B-smooth. Multiplying n now by a small odd prime
might result in a more favourable factor base and a faster factorization, although the
number to be factored becomes greater. See density.)

Of what size shall the factor base be? The larger B, the easier it is to find B-smooth
numbers, but the more B-smooth numbers one needs and the more work it is, to
multiply a square from them. Some very rough assumptions about the distribution of
smooth numbers and the number of steps needed to find them, lead to the famous result

Bopt≈e2/4⋅ln n⋅ln ln n (see [1] and [4] for details). However, the actual optimum value
(factor-base-size) is implementation dependent and though limited by the available
memory. At this point we are only interested in its magnitude:

For n≈1030 , 1050 , 1070 we take # B≈400, 4 000, 25 000 factors.

Sieving

The smaller ∣x i
2−n∣ is, the more likely x i

2−n is B-smooth. So we search close to
x≈n . For example we could scan all x in an interval X :=[⌊n ⌋−M ; ⌊n⌋M]

by probe-dividing with the elements of the factor base. That's too slow, and the most
important trick of the QS is a quick heuristic to find the x, that have a good chance to
give B-smooth x2−n :

At first the sieve S will be initialized for all x∈X with S x⌊ log2∣x
2−n∣⌋ . So

we have very small integers here, the function ilog2 is realized by the LISP-function
integer-length. Instead of expensive divisions, we simply subtract rounded
logarithms. With a little number theory we can find for each p j∈B all x∈X for
which p j divides x2−n ...

Uli Meyer ulimyhmpqs 3

Assume we know one number r j with p j ∣r j
2−n . Then for all z∈ℤ , p j

divides r jz⋅p j
2−n=r j

2−n2zr j z2 p j⋅p j as well.

For all x∈X ∩{r j z⋅p j∣z∈ℤ} we now know that p j ∣ x2−n and at these
⌊2M1/ p j⌋ positions we set S xS x−⌊ log2 p j⌋ . This can be done quite

effectively, it's just a loop and some integer additions! After having "sieved in" all
p j∈B ∖{−1} this way, it is easy, to find good candidates for B-smooth x2−n

because at those positions we will have S x≈0 . In practice we scan the sieve for
positions x at which S x is less than a certain threshold value, for which
⌊ log2 max B⌋ is a good heuristic. To find out whether these x2−n indeed are

B-smooth, we then need to probe-divide.

On one hand the smaller factors p j take the most work to sieve in, on the other
hand these small factors have the least effect on S x . Practice shows, that the run-time
can be improved, if primes p j below a certain limit (omit-below) are not sieved in at
all, and to choose a little higher threshold value to compensate. Finally we could also
sieve in powers of p j , but again the computational costs won't pay.

But how do we find r j , so that r j
2≡n mod p j ? r j does exist, because n is

quadratic residue modulo p j . Instead of simply trying 0, 1, ... , p j−1 we use the
powerful Shanks-Tonelli-algorithm. Its idea is the stepwise "improvement" of an
assumed root and it has been implemented as sqrtmodprime.

In fact there always exist two modular square roots of n for each odd prime p j :
r j (found by the Shanks-Tonelli-algorithm) and −r j≡p j−r j mod p j . It is

important to sieve in for both roots.

Solving

How do we proceed, so that a product of B-smooth numbers becomes square?
Obviously the prime exponents of the product need to become even. The equations we

obtained by sieving are of this form: x i
2−n=∏

p j∈B
p j

ei , j . We are interested in the

corresponding congruences x i
2≡∏

p j∈B
p j

ei , j mod n . By multiplying the congruences

for some x1 and x2 , we get

x1 x2
2≡∏

p j∈B
p j

e1, je2, j mod n .

To find out, if a prime exponent e1, je2, j is even, it is sufficient to know if e1, j

is even and if e2, j is even, in other words we look at e i , j mod 2 only and
multiplying two congruences becomes an addition of two vectors in ℤ2

#B on the right
hand side of the congruence. That sounds like loss of information, but the right hand
side can be reconstructed later on (the values of x1 and x2 are stored in xarray).

Uli Meyer ulimyhmpqs 4

Finally we obtain a matrix that can be solved for instance by the Gauss-algorithm, and
at this point we anticipate that it requires approximately # B equations, to make all
prime exponents become even.

Let me put it another way: We transform each equation x i
2−n=∏

p j∈B
p j

ei , j into a

relation of this form:
〈 {i} ; { j ∣e i , j mod 2=1}〉

So we remember only the "non-square" prime factors. The multiplication of two
equations is equivalent to the following operation on the two corresponding relations:

〈 I 1 ; J 1〉 × 〈 I 2 ; J 2〉 = 〈 I 1∗I 2 ; J 1∗J 2〉 ,

where M 1∗M 2 :=M 1∪M 2∖M 1∩M 2 means the exclusive-or-operation on the
sets M 1 and M 2 (isomorph to addition in ℤ2

#B).

The simple algorithm put-into-its-bucket is derived from Gaussian elimination:
Each p j∈B corresponds to an initially empty bucket bucket j nil . Every new
relation will be stored in "its" bucket, according to the greatest prime factor that has an
odd exponent. If there is already an relation in this bucket, the new relation will be
multiplied by the existing one, which makes the corresponding prime factor exponent
even and the process is repeated with the resulting relation.

put-into-its-bucket 〈 I ; J 〉 :
if J={} then try-to-solve  I 
else if bucketmax J=nil then bucketmax J〈 I ; J 〉
else put-into-its-bucket bucketmax J×〈 I ; J 〉 

At latest when all buckets are non-empty, one more relation will cause all exponents
to become even and we obtain the relation 〈 I ; {} 〉 , that corresponds to the desired
congruence u2≡v2 mod n with

u=∏
i∈ I

x i and v=∏i∈ I
x i

2−n ∈ ℕ

Note, that at this place we deal with very big numbers, because # I≈# B
2 numbers of

size x i≈n and x i
2−n≈M n will be multiplied. Should gcd u±v , n now

obtain only trivial divisors of n, every extra relation would give an extra chance.

The ulimyhmpqs-implementation continues the hunt for divisors of n until it is
completely factored. On new divisors (see new-factor) a probabilistic primality test
(prime?, currently Solovay-Strassen) will be applied. Composite divisors are tested for
being a power (power-breaker), and tried to be factored further by taking the gcd with
already known divisors.

Relations in ulimyhmpqs are not represented as bit-vectors in ℤ2
#B but as sorted

Uli Meyer ulimyhmpqs 5

lists. Bit-vectors for new relations would contain almost just 0's (the resulting matrix is
called to be sparse), corresponding to very short lists. During probe-division the factors
occur already in sorted order and the algorithm described above will be supported by
the fact, that max J must not be searched, as it is the first element of the sorted list.
The exclusive-or-operation on two sorted lists (xor-merge) can be done quite
effectively by the use of destructive list operations.

In spite of list representation Gaussian reduction is not the optimum method for
solving sparse matrices. See [1] for a discussion of this matter, and why more serious
implementations use the superior block Lanczos method to delay the point at which the
linear algebra step becomes the dominant step in run-time.

Partial relations

If we choose the sieve threshold value too low, we might not catch all possible
relations. On the other hand, if we choose the threshold value too high, we might waste
time by probe-dividing many numbers that are not B-smooth. The first implementations
of the QS already used the following trick: If after probe dividing x1

2−n there is only
a "small" remaining factor R∉B ,

x1
2−n=R⋅∏

p j∈B
p j

e1, j ,

we keep this "partial relation" in memory. If we now find another partial relation with
the same remaining factor R, we can multiply both relations and obtain

x1 x2
2≡R2⋅∏

p j∈B
p j

e1, je2, j mod n .

We can use this product as a "full relation", because R2 is square and needs not to be
considered in the solving step. If we have k partial relations with R, we will get k−1
full relations.

This extension is called QS with one large prime. In fact it doesn't matter whether R
is prime, on the other side we know it is for sure if Rmax B2 , because B is
defined to contain all primes below max B , that possibly divide some x2−n .

ulimyhmpqs keeps partial relations with R less than slp-max (slp means single large
prime) in a hash-table of 2h places. A cheap ⌊R/2⌋mod 2h serves as hash-function.
In case of collisions that do not reveal a full relation, only the partial relation with the
smaller R is kept, as it has the better chance to find a fitting partner. slp-max can be
altered by using the alfa parameter (slp-max  alfa max B), h corresponds to the
slp-log2 parameter, that defaults to 16, and should be increased when factoring
numbers greater than 1060 if enough memory is available.

Uli Meyer ulimyhmpqs 6

The greater n is, the more frequently relations will be found by combining partials.
For very large numbers n10100 one will find only very few full relations and the
algorithm depends almost exclusively on finding partials. Some implementations
consequently go one step further, and allow larger remaining factors R, that are
composite and hence have to be factored. The QS with two large primes keeps "partial-
partials": If there are e.g. partial relations with R1=q1 q2 , R2=q2 q3 , R3=q3 q1 , a
graph-cycle-finding algorithm reveals the desired square

R1 R2 R3=q1 q2 q3
2

See [4] for an excellent discussion of this issue. The authors of [2] estimate that this
improvement of the QS has shifted the cross-over-point with the GNFS to
approximately 130 decimals.

The size of the sieve

Complying with the general heuristic "start searching, where you believe you will
find something", we already mentioned the sieve interval

X :=[⌊n ⌋−M ; ⌊n⌋M]

above. What size must M have, in order to find a few more than # B relations? This in
fact is a difficult question, and can be answered practically by breaking X into smaller
sub-intervals of size 2m

X k :=[⌊n⌋−1k⋅⌊k /2⌋⋅m ; ⌊n⌋−1k⋅⌊k /21⌋⋅m−1]

which can be scanned successively for k=0, 1, 2, ... with increasing distance from
[n] until there are enough relations to factor n. One has then sieved less than one

sub-interval too much, to solve the task (Other than ulimyhmpqs, most implementations
first collect the relations before the solving starts. Then of course one needs a
probabilistic estimate for the number of required relations, e.g. #B+20).

With increasing k, the x2−n become larger and larger and fewer and fewer of
them are B-smooth. The QS tends to "fall asleep". Is there a possibility to make the

x2−n smaller and or to limit their size?

Uli Meyer ulimyhmpqs 7

MPQS

The QS searches for x∈X with B-smooth f x  , where f x =x2−n . The
principle p j∣ f  s j⇒ p j∣ f  s jz⋅p j for all z∈ℤ holds though for every poly-
nomial with integer coefficients (not taking into consideration what difficulties might
occur, when looking for the suitable s j).

Consider the polynomial g  x=axb2−n . It generates squares modulo n as
required for the QS. If we now choose b so that a given a divides b2−n , then a also
divides g  x=a2 x22 a b xb2−n for all x∈ℤ . The resulting polynomial

h x :=g x /a though grows faster than f x =x2−n , but by choosing different
pairs a , b we can generate as many different polynomials as we like. Instead of
enlarging the sieve interval, with the disadvantage described above, one can simply
switch to another polynomial. That's the idea of the Multi Polynomial Quadratic Sieve,
MPQS.

Let's have another look on g x . Let a≪n and b≪n . The polynomial
g  x gives a quite slim parabola with a minimum of roughly g 0=b2−n≈−n .

Though we have the best chance to find smooth numbers if we keep them small, and so
we choose a so that the maximum g M =a⋅Mb2−n≈n in the sieve interval
[−M ;M] has approximately the same absolute size. So we obtain

a ideal ≈
2n
M

.

Where the QS sieves on numbers of size f [ n]M ≈2⋅M⋅ n , the MPQS with
a≈a ideal comes along with h M ≈n /a≈ 2

2⋅M⋅n . The sieve size M of the QS
strictly depends on #B. When using the same factor base size with the MPQS, we can
greatly influence and limit the size of the numbers sieved upon by simply choosing an
M much smaller than what would result in the QS. Of course there is an optimum M,
which varies with different implementations. This optimum depends on the run time
costs for switching polynomials and the size of n.

The first version of the MPQS used a∉B . To avoid extra considerations in the
solving process one chooses a=t 2 to be square of some prime t. This turned out to be
disadvantageous, because the effort to compute all the s j for each new a≈a ideal is
quite large. Contrarily the HMPQS (or SIQS) uses a that are B-smooth and so take
part in the solving. Switching polynomials is much faster here, because each a turns out
to allow a large set of suitable b, each giving a different polynomial gb x , and the
recalculation of the "zeros" s j within this set of polynomials is relatively cheap.

Uli Meyer ulimyhmpqs 8

Modular square roots

The QS required solutions for r j in r j
2≡n mod p j . In this context we

mentioned the Shanks-Tonelli-algorithm to find modular square roots modulo an odd
prime. There are two solutions, ±r j .

Due to the condition a ∣b2−n the MPQS requires to solve another quadratic
congruence b2≡n mod a for each a. Having chosen a=t 2 as the square of some
prime also reveals two solutions for b.

Let now a=∏ ak be composite with ak prime, ak≠2 and k≠l⇒ak≠al
Which b solve now b2≡n mod a ?

From b2≡n mod∏ a k it immediately follows for all k: b2≡n mod ak  and so

for each ak the same condition is valid as for the primes of the factor base  n
a k =1

and thanks to Shanks-Tonelli we can compute the two solutions ±k of
k

2≡n mod ak  for all k. With the help of the chinese remainder theorem, we are
now able to construct our desired

b≡∑ k⋅ak⋅
a
ak
mod a  with ak⋅

a
ak
≡1 mod ak 

where ak is the multiplicative inverse of a
ak

modulo ak , which exists as ak and
a
ak

are relatively prime (see invmod, a recursive definition of the extended Euklidian
algorithm).

Assume a had d1 prime factors, so k∈{0, 1, ... , d } . Due to the multiplicity
of the k we get a total of 2d1 different roots

b ≡∑
k=0

d

k⋅bk mod a  with bk :=k⋅ak⋅
a
ak

and ∈{−1, 1}d1

HMPQS

Consequently the HMPQS makes use of this fact, and a corresponding number of
different polynomials gb x can be constructed for a composite a at once.

Consider now  and  with k=−k for all k∈{0, 1, ... , d } . Obviously it
is b =−b . Unfortunately we now have

g−b x = a⋅x−b2−n =a⋅−x b2−n = gb−x 

and as we sieve in an interval x∈ [−M ;M] , we would effectively sieve the same
numbers twice. To avoid this we need to prevent to alternate all signs k and
therefore we set 0:=1 and there are still 2d different polynomials gb x
remaining.

Uli Meyer ulimyhmpqs 9

To obtain a large number of polynomials, d needs to be large as well, so a should

have many small prime factors ak and due to  n
a k =1 this a is B-smooth and each

ak divides gb x for all x∈ℤ .

There are two open questions. How can one compute the s j for some gb x ?

And finally, how do we choose d and the ak∈B , so that a=∏
k=0

d

ak≈a ideal ?

The hypercube

In the paragraph "sieving" we defined the r j with r j
2≡n mod p j . For the QS

we needed to calculate them for all p j∈B , due to their useful property
p j ∣ f ±r jz⋅p j for all z∈ℤ . The HMPQS requires them as k , because of
k=r j for ak=p j∈B . Besides we will need them to calculate the s j with the

useful property p j ∣ g s jz⋅p j : Due to g  x= f axb it immediately follows
that a⋅s jb≡r j mod p j . To solve this congruence for s j , we need to have the
multiplicative inverse of a modulo p j , let's say å j with a⋅å j≡1 mod p j . This
inverse exists only if a and p j are relatively prime. No problem, because otherwise,
we have p j=ak and we know already that p j ∣ g x , that's after all the way we
constructed g  x (ulimyhmpqs sets factor-1/amodp −1 , to mark those

p j=ak that will not be sieved in). Finally we obtain two solutions

s j≡ å j⋅±r j−b mod p j .

Initially we have to compute the b  for each  and the s j for the complete
factor base before we can start sieving. This computational effort is not to be
underestimated! But there is another trick: Each  with 0=1 corresponds to the
corner of a d-dimensional hypercube of edge length 2 and the awkward sum-calculation
for b  becomes one simple addition if we just traverse from one corner to a
neighbouring corner, in other words, change the sign of only one of the k at a time.
We reach each corner of the hypercube if k follows a Hamiltonian path:

path(d): if d=0 then [] else path(d-1) & [d] & path(d-1)

e.g. path(4)=[1 2 1 3 1 2 1 4 1 2 1 3 1 2 1]

Let  ' k=−k and  ' i≠ k=i , then we obtain b  ' ≡b−2⋅k⋅bk mod a .
Especially we have s j '  ≡ s jk⋅2 å j bk mod p j and it is worth to store the
values 2 å j bk in a two-dimensional array (kip) in advance, before starting to traverse
the hypercube.

Uli Meyer ulimyhmpqs 10

The a-generator

How to construct a with a=∏
k=0

d

ak≈aideal and ak∈B ? d shall be as large as

practicable, so the chosen ak need to be small. Remember, that p j=ak cannot be
sieved in. If we now select the smallest p j∈B as ak , the resulting polynomials

h  x  generate probably less B-smooth numbers, as if we had chosen larger ak .
Additionally d should be dimensioned so, that it takes at least a few a to factor n, so it
was worth to prepare the corresponding hypercubes (analogous to the argument for
using sub-intervals for the QS).

Similar as described in [2] ulimyhmpqs therefore uses ak with ak=p j and
2qmin j2qmax . Within these boundaries there are q=qmax−qmin even and odd j.

Now all q3 possible permutations of three different odd indices are generated:

top:= p j1
⋅p j2
⋅p j3 with j 1≠ j 2≠ j3≠ j1 .

So the smallest product will be topmin=p2qmin1⋅p2qmin3⋅p2qmin5 . These triples are
distributed among an array A of size T according to their logarithms, each place of the
array may contain more than one element:

A[index log top] top with index x:=[
x−log topmin

log topmax−log topmin
⋅T] .

Finally a recursive function systematically multiplies a1 by factors with even
indices until a is large enough, so that the triples in A can be taken to "top it off", to
meet a⋅top≈a ideal . Recursion starts with make-cubes 1, qmin  .

make-cubes a , q  :
if log a ideal−log a log top min then

unless log a ideal−log a log topmax

use-cube a⋅A[index log aideal−loga]

else if qqmax then
make-cubes a⋅p2q , q1
make-cubes a ,q1

This pseudo-code does not take into account, that a place of the array is either empty
or contains more than one triple, so either no or a few hypercubes at once are generated.
The author's intention was to demonstrate, that make-cube does not generate
hypercubes of a fixed dimension d (it starts with the higher possible d) and that all
generated a are different, because the intersection of the two subsets of B (even and odd
j) is empty.

Uli Meyer ulimyhmpqs 11

It required some experimenting to find reasonable parameters, so that on one hand
the array is not too sparse (to assure a sufficient number of hypercubes is generated) but
on the other hand large enough, so that the error

error a :=∣a−a ideal∣/a ideal

becomes small. By setting qmin=5 the first nine primes of the factor base will not be
used at all. For n1042 we set qmax=105≪# B

2 and achieve a total of 161 700
possible topoffcubes which we distribute among T=20 000 places. This results in

error a 0,05% , good enough to not have any significant drawback on the
performance.

To prevent the number of generated hypercubes to be insufficient this way, for
n1042 , the top will be made of only two factors to limit their size. Below
n≈1025 now qmax is limited also by # B/2 . This all leads to have less tops,

which is counteracted by setting T :=min {20 000, ⌊# {top}/8⌋} . Nevertheless an
error a ≈0,5% will be achieved and tests with 105 different n≈1023 always

generated sufficient a. For n1023 ulimyhmpqs diverts to the rigorous algorithm
make-cublets, that uses all elements of B regardless of error(a). This was just to close
the gap to probe-division, which is sufficient to factor numbers up to n≈1012 if one
has the first 100 000 primes at hand (Of course there are better algorithms for numbers
of intermediate size).

The composition of the factor base can be assumed to be random, the probability for

 n
p =1 is roughly 1

2 . So there is a very small risk that make-cubes fails. If so,
the a-generator reverts to use two- instead three-factor tops and finally continues by
using make-cublets to finish the factorization.

The sieve in detail

To refer to the sieve array more efficiently, the intervall X :=[−M ;M] is
projected onto Y :=[0 ; 2M] . The resulting sieve polynomial is

h '  y =h  y−M =a y⋅y

with  :=2b−Ma  and  :=aM 2−2bMb2−n
a

,

So two bignum multiplications and additions are necessary to compute an individual
value h '  y  . Initializing the sieve by S y⌊log 2∣h '  y∣⌋ would be much too slow,
if we had to compute each h '  y  within y∈[0 ; 2M] . Alternatively ulimyhmpqs
determines sub-intervals Y l⊂Y for l∈ℕ , so that ⌊ log2∣h '  y ∣⌋=l for all y∈Y l
Unfortunately the parabola has four such sub-intervals for each l, according to the signs
of h '  y  and y− 

2a . Besides the inverse function of h '  y  is required to
determine the boundaries h '−12 l of the sub-intervals. For performance reasons
floating point arithmetic is used to take the required roots.

Uli Meyer ulimyhmpqs 12

Finally the factors p j with p j∤a will be sieved in. Of course both "zeros" s j are
to be considered. With p j∣g  s j  we get p j∣h '  s jM  and starting with the
smallest y∈Y with p j∣h '  y  a loop runs across the sieve:

y s jM⌈ −M− s j

p j
⌉⋅p j

repeat S y S y−⌊ log2 p j⌋

y y p j

until y2M

Thereafter, when scanning the sieve for values S y < threshold, all p j have to be
considered for probe-dividing, even those with p j∣a , as g  y−M =a⋅h '  y  might
be divisible by a power of ak , especially as the ak were chosen to be small. If
probe-division now reveals a h '  y i to be B-smooth,

h '  y i=h  y i−M =∏ p j
ei , j

a new relation has been found, because

g  yi−M =a⋅h  yi−M =a  y i−M b2−n

will be B-smooth as well. Instead of multiplying by a and dividing again by ak

thereafter, the new relation can be expressed as
〈 {i} ; { j ∣ e i , j mod 2=1}∗{ j ∣∃k  ak= p j}〉 and x i :=a  yi−M b

and processed as described above (solving).

Summary of the algorithm

The sieving part of the algorithm has been summarized on the next page in pseudo
code with some references to the source-code. The solving part and the a-generator
have been described above, and will not be repeated here.

Given n, #B and M, the factor base B :={−1, p1, p2,...} will be set up like this:

set j2 , p0−1 , p1 2

for p3,5,7 ,11... (the odd primes)

if  n
p =1 then set p j p , j j1

until j=# B

For all p j∈B ∖{−1} we compute r jn mod p j and ⌊ log2 p j⌋ in advance.
Let i0 the number of found relations. To prepare the single large prime extension,
we further need an array H of 2h places, each initialized to H nil , which serves
to store partial relations. Full relations will be stored in x i (xarray) and the buckets
described in the paragraph on solving.

Uli Meyer ulimyhmpqs 13

For each generated hypercube a=a0⋅a1⋅⋅⋅ad≈a ideal with ak=p j k (a-generator)

for k 0,... , d set ak
a
ak
−1mod ak  , bk r jk

⋅ak⋅
a
ak

set bnil
for k 1,2 ,1,2 ,3 ,2,1 , (Hamiltonian path, b-generator)

if b=nil then set b∑k=0
d bk

for p j∈B ' :={p∣ p≥omit-below∧¬ p∣a}
set å j

1
a mod p j

set s j å j⋅r j−b mod p j
set s j '  å j⋅−r j−b mod p j
for k '1,... , d set kip j , k '2 å j bk ' , k1

else set bb−2⋅k⋅bk

for p j∈B '
set s j s jk⋅kip j , k mod p j
set s j '  s j 'k⋅kip j , k mod p j

set k−k

set  2b−Ma  ,  aM 2−2bM b2−n
a (sieve-for-ab)

let h '  y :=a y⋅y
for l0,1 ,2... (init-sieve)

for each Y l⊂[0 ;2M] with y∈Y l⇒⌊ log2 h '  y⌋=l
for y∈Y l set S y l

for p j∈B ' (sieve-in)
set y s jM⌈ −M− s j

p j
⌉⋅p j

while y≤2M set S y S y−⌊ log2 p j⌋ , y y p j

set y s j 'M⌈ −M−s j '
p j
⌉⋅p j

while y≤2M set S y S y−⌊ log2 p j⌋ , y y p j

for y0,... ,2 M
if S ythreshold then (divide-out-mod-2)

set R h'  y , x a y−M b , J { j0,... , j d }
if R0 then set R−R , J  J∗{0}
for p j∈B ∖{−1}

set e0
while R mod p j=0 set e1−e , R R / p j

if e=1 then set J  J∗{ j}
if R=1 then set i i1 , x i x

put-into-its-bucket {i} , J 
else

set ⌊R/2⌋mod 2h

if H =nil then set H R , x , J 
else

let R' , x ' , J ' :=H 

if R=R' then
set i i1 , x i x⋅x '
put-into-its-bucket {i} , J∗J ' 

else if RR' then set H R , x , J 

Uli Meyer ulimyhmpqs 14

Parameter optimizing

A variety of parameters need to be adjusted, to optimize run time. These are the size
of the factor base #B, the sieve size 2M, the limit omit-below (primes smaller than this
will not be sieved in), the size of the hash-table to keep partial relations, and the sieve
threshold. ulimyhmpqs allows to specify these parameters manually, but though it
offers some reasonable default values. When determining these default values
empirically, seven problems occured.

First, there are dependencies between parameters (e.g. a larger omit-below should
go with a larger threshold) which requires multi-dimensional test series. Second, due to
the almost-exponential run time characteristics it is difficult to conclude from test
results for smaller n to higher n, so especially when we need good parameters, because
run-time is extremely high, we can't run complete tests. Third, optimum parameters for
some n may differ from another n of almost the same size due to the quasi-random
composition of the factor base. Fourth, if you try to substitute test series by prediction
through math, you enter a difficult, apparently only partly explored area of analytic
number theory. Sixth, the nature of LISP garbage collection causes noise in time
measurement. Seventh, parameters depend on the individual machine, the used LISP
and must be limited so that the required memory does not exceed the available.

The most important parameter is the factor base size #B. Fortunately there is this
heuristic # Bopt≈e2/4⋅ ln n⋅ln ln n which ulimyhmpqs uses, although in almost every case
75% of this value runs faster. This was decided, as especially when n turns out to have a
very unfavourable factor base (that lacks small factors), #B has to be higher to
compensate. I have started to investigate heuristic estimates for the frequency of smooth
numbers of given size that do not ignore the composition of the factor base (like in [1]
and [4]) but this work is not finished yet. Finally the hmpqs needs ~ # B2 memory,
which becomes a bottleneck, when factoring large numbers. The default-function
factor-base-size limits #B to 9 000, which will require roughly 100MB.

Thereafter test series with different M and n up to 1060 were run, and the statistic
optimum was approximated by M opt≈4800 n.0182 (see m-opt).

Another test series showed, that it is in average favourable to not sieve in primes
below 25 (omit-below), if the threshold is increased by 1

2⋅log2 p for each prime p
that is omitted.

When trying to factor numbers greater than 1060 with ulimyhmpqs two aspects
have to be considered: First #B has to be chosen lower than # Bopt , because the
gaussian reduction will become slow. Besides the available memory has to be taken
care of. Second the threshold has to be increased (delta-t) in order to catch more
partial relations, they will now play an important role.

Uli Meyer ulimyhmpqs 15

The following table of average run-times refers to ulimyhmpqs running on
Macintosh Common LISP 4.3.5. on a 500MHz G3 processor. Except for the manual
setting of #B=7000 for n≈1060 the default parameters were used.

log10 n #B M time

30 420 16900 1.3s

40 1350 25700 23s

50 3800 39000 270s

60 7000 59000 3800s

4998267725099435687608264798548361735594197211550916814863113089903531
was the 70-digit number, and n=22561 the 78-digit number used in the following
test runs. Where in the table above in average less than 10% of the relations where
found due to partials, this rate could be increased by choosing a higher threshold (the
number in parentheses refers to the delta-t parameter).

log10 n #B memory M threshold due time

70 9000 100MB 80000 22 (+0) 14% 38986s

27 (+5) 34% 32402s

30 (+8) 45% 28590s

77 20000 500MB 122257 31 (+10) 47% 263300s

For the last two tests the size of the hash-table had been precautionary changed from the
default setting of 216 to 220 to avoid collisions, which turned out to be sufficient, as
only 12% of the hash-table places were occupied after the last 73hrs test.

The source code contains a description of the parameters and the functional access to
ulimyhmpqs, as well as a description of the progress report, that will be displayed if the
:report parameter is set to T. Users who like to optimize ulimyhmpqs for large
numbers will find some code, that allows to gather performance data without actually
completing a factorization.

Uli Meyer ulimyhmpqs 16

References

One will find a lot to read about the quadratic sieve. At this place only papers that
have been referred to are listed. I personally recommend to read what its inventor Carl
Pomerance himself wrote about the QS (e.g. [1] and [3], the latter also giving a brief
description to the number field sieve). The probably best source of help for
implementors currently found in the internet is [4], which unfortunately was published
after ulimyhmpqs had been developed.

[1] C. Pomerance

Smooth numbers and the quadratic sieve

to appear in the proceedings of an MSRI workshop, J.Buhler and P. Stevenhagen, eds.

http://www.dartmouth.edu/~carlp/PDF/qstalk3.pdf

[2] B. Carrier, S. Wagsta

Implementing the Hypercube Quadratic Sieve with Two Large Primes
Proceedings of the International Conference on Number Theory for Secure Communications,
2003.
https://www.cerias.purdue.edu/tools_and_resources/bibtex_ archive/archive/2001-45.pdf

[3] C. Pomerance

A tale of two sieves

The notices of the AMS 43 (1996) 1473-1485

http://www.ams.org/notices/199612/pomerance.pdf

[4] M. Kechlibar

The Quadratic Sieve - introduction to theory with regard to implementation issues
http://www.karlin.mff.cuni.cz/~krypto/mpqs/main_file.pdf

Uli Meyer ulimyhmpqs 17

http://www.dartmouth.edu/~carlp/PDF/qstalk3.pdf
http://www.karlin.mff.cuni.cz/~krypto/mpqs/main_file.pdf
http://www.karlin.mff.cuni.cz/~krypto/mpqs/main_file.pdf
http://www.karlin.mff.cuni.cz/~krypto/mpqs/main_file.pdf
http://www.ams.org/notices/199612/pomerance.pdf
http://www.ams.org/notices/199612/pomerance.pdf
http://www.ams.org/notices/199612/pomerance.pdf
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/2001-45.pdf
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/2001-45.pdf
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/2001-45.pdf
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/2001-45.pdf
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/2001-45.pdf
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/2001-45.pdf
http://www.dartmouth.edu/~carlp/PDF/qstalk3.pdf
http://www.dartmouth.edu/~carlp/PDF/qstalk3.pdf

